
The Visual Development of
Rule-Based Systems

The Visual Development of
Rule-Based Systems

Introduction
In the late 1980's Knowledge

Based Systems (KBS) were seen
to be leading edge software
technology. Developers thought
that the simplest KBS paradigm,
Expert Systems, perhaps
combined with probabilistic and
fuzzy logic extensions would soon
revolutionise the way that
software was used throughout
business and other sectors of the
economy.

KBS software was built on
rules which encoded the
knowledge of experts in any
given domain. Computers would
then use this encoded knowledge
to make decisions on behalf of
their human users.

It was not long however,
before the bubble of hype
surrounding these systems began
to burst. Something was wrong,
but what was it?

The Knowledge
Acquisition Bottleneck

Apart from the limited power
of the computers available at the
time, the major problem was the
difficulty of acquiring implicit
knowledge from the minds of
experts and then representing it
explicitly. This so-called
Knowledge Acquisition Bottleneck
was believed to be the limiting
factor on building systems that
could do complex, useful tasks.

By the end of the twentieth
century however, university
departments were working hard at
this problem. Curiously it was often
Psychology departments rather
than Computer Science
departments which had the most
impact in this area.

In particular, Ethnography (by
then seen as a core part of
Cognitive Psychology) was being
used to study behaviour in situ with
the aim of identifying the cognitive
processes underlying that
behaviour. Just as Margaret Mead

(an early ethnographer) had lived
amongst native tribes in Papua
New Guinea in order to study
their cognitive behaviour, so
Psychology departments were
sending researchers (often under
cover) into workplace
environments to discover how
people approached problem-
solving activities.

This work was, and continues
to be, very successful. Knowledge
acquisition is no longer the 'black
art' it was deemed to be. Despite
this, KBS has continued to be
underused. Why might this be?

A Knowledge
Representation
Bottleneck?

It is my contention that the
problem was not primarily with
how we obtained knowledge, but
with how we represented it. I am
not arguing that rules (or
Bayesian networks and other
knowledge representation
methods) are inadequate to the

PCAI 29 18.3

By Charles Langley and Clive SpenserBy Charles Langley and Clive Spenser

Order the new Volume 17
CD at www.pcai.com/store

task, but rather that it is the way in which these rules
and other representational formalisms are themselves
represented that is the limiting factor.

At first a simple rule-base is relatively transparent,
especially if properly documented. Certainly such
systems were easier to comprehend than procedural
code and were subsequently easier to update and
amend. As such rule bases became larger and more
complex however, a simple syntax error, perhaps only
involving one word, could prevent them from
operating correctly. The complexity of these rulesets
also meant that it was difficult to get an overview of
what was intended, thus impeding their maintenance
and extension.

A Picture is Worth a Thousand Words
The problem of rulebase comprehensibility, I

would argue, is the fact that we have primarily
represented knowledge using text based structures
rather than visual ones. No matter how close to
natural language a knowledge representation language
is, you cannot see at a glance what a complex system is
trying to do.

Visual Rule Generation
Rule generation via a graphical interface is a hot

topic right now, with offerings from a number of
companies small and large. This is being driven in part
by current interest in so-called 'business rules
management' which is arguably a reawakening of the
KBS paradigm we mentioned earlier.

London based Logic Programming Associates is an
appropriate company to enter this market as it has been
producing rule-based software since the mid 1980s. Its latest
product, VisiRule, enables rule-based systems to be
automatically generated from a flowchart drawn on the
screen.

Consider the following business rule (Ross 2003):

Rule: An order must be credit-checked if any of the
following is true:

* The order total is
more than $500

* The outstanding
balance of the
customer's account
plus the order amount
is more than $600

* The customer's
account is not older
than 30 days

* The customer's
account is inactive

* The customer is out of
state

PCAI 30 18.3

Figure 1

This rule can be decomposed into
five separate rules, one for each
of the bullet points. This is how
the first of these rules can be
constructed using VisiRule:

Start Boxes, Questions,
Expressions and
Continuation Boxes

Figure 1 consists of different
coloured boxes connected by
arrows. The top box is a Start
Box, used to start a chart or sub-
chart. The second box is a
Question Box with a name of a
variable (order_total) and a
prompt (what is the total of the
order?). This one is a Number
Input type Question Box. Other
types available are Single Choice,
Multiple Choice, Integer Input
and Set Input, each having a
separate colour.

Question Boxes can also
optionally contain an explanation
to provide explanatory text if the
user presses an Explain button.

The two white
boxes in figure 1
are called
Expression Boxes.
These boxes
determine the
direction of flow
of control in the
chart. If the user
answers 600 to the
question above,
control passes to the credit_check
Continuation Box. If the user
enters 200, control passes to the
rule2 Continuation Box.

Continuation Boxes provide
modularity since they direct the
flow of control to a Start Box of
another chart or sub-chart with
the same name.

Calculations Using
Statement Boxes

The chart shown in figure 2
introduces another type of box,
the Statement Box. Here we use
one to calculate the total of the

order and the outstanding balance
which is then tested by Expression
Boxes just as with a Question Box.
We now have the first two rules.

The final three rules are
produced in the same way (Figure
3).

Finally we build a small chart
representing the credit check. This
introduces two new types of box.
The second box down in figure 4
is a Code Box. Code Boxes can
contain any Prolog code. In this
case, the Code Box is used to
display a message box with advice
for the user. More sophisticated
multi-line Code Boxes can be used

for date
handling,
invoking
external
programs and
loading
spreadsheets.

The other
new box type
in figure 4 is
the End Box.
This
terminates the

PCAI 31 18.3

Figure 3

Figure 2

program after first displaying a
Windows type message box
containing the text "send the
order" or "refuse the order".

All in One
Although we chose to

represent our five rules as five
separate charts, we could have
put them all together in one chart
as in figure 5. There is no limit
(apart from computer memory)
to the size of a flowchart, and a
zoom control
enables you to see
as much of it on
one screen as you
wish.

Simplifying
More Complex
Rulesets by
Using
Statement
Boxes

So far we have
a very simple rule
network. Let us
make it a little
more complex by
modifying rule1 to
include the notion
of different
customer types,
each of which has
its own order limit:

Rule1: An order
must be credit-
checked if any of
the following is
true:

PCAI 32 18.3

Figure 5

Figure 4

Figure 6

* Customer status is large
corporate and the order total
is more than $5000

* Customer status is small
corporate and the order total
is more than $1000

* Customer status is individual
and the order total is more
than $500

We could do this using
Expression boxes as in Figure 6.

One problem with this
representation is that it is far
from compact. We can improve
on this by using more complex
expressions as in the chart in
Figure 7. This however, is not
ideal either, as the construct order
limit is not represented explicitly
and therefore cannot be
referenced elsewhere in the chart.
This leads to unnecessary
duplication. Such duplication
reduces the modularity of the
chart and makes the order limit
for each customer type harder to
update or revise. To represent
order limit we can use a
Statement box as in figure 8. This

PCAI 33 18.3

Figure 7

Figure 8

Visit the PC AI Store at
www.pcai.com/store

combines the
compactness of the
previous chart with an
explicit order limit
which we can refer to
later. For example,
suppose we modified
rule2 in the following
way:

Rule2: An order must be
credit-checked if the
following is true:

* The outstanding
balance of the
customer's account
plus the order
amount is more
than $100 over the
customer's order
limit.

Figure 9 shows
the s imple vers ion
using express ion
boxes whi le f igure 10

PCAI 34 18.3

Figure 9

shows the more compact version
using expression boxes.

Figure 11 illustrates the
version which uses a Statement
box. It is because we can
reference order_l imit that this
is so much s impler than the
f lowcharts shown in f igures 9
and 10. Furthermore, the
credit l imit updates i tse lf
automatical ly i f we revise the
order l imits in rule1.

A Statement box is needed
not just to perform calculat ions

on the answers
to previously
asked
questions, but

also to reference them for testing
if the questions appear in a
separate chart. Figure 12 shows
this for a revised ruleset which
recasts rule5 as:

Rule5: An order must be credit-
checked if the following is true:

* The order is out of state and
the customer status is not large
corporate

Our modifications to Ross'
original ruleset can be
represented textually as follows:

Rule: An order must be credit-
checked if any of the following is
true:

* Customer status is large
corporate and the order total
is more than $5000

* Customer status is small
corporate and the order total
is more than $1000

* Customer status is individual and
the order total is more than $500

PCAI 35 18.3

Figure 12

Visit the PC AI Store to

order Volume 16 and 17 CDs

Issue Topics Include:

*Intelligent Applications
*Intelligent Web Applications

and Agents
*Neural Networks

*Expert Systems and
Knowledge Representation
*Data Analysis and Mining,
Modeling and Simulation
*Business Applications

Vist the PC AI store today:

www.pcai.com/store

Figure 11

Figure 10

* The outstanding balance of the
customer's account plus the
order amount is more than $100
over the customer's order limit.

* The customer's account is not
older than 30 days

* The customer's account is
inactive

* The order is out of state and the
customer status is not large
corporate

This is a disjunction of eight
separate sub-rules rather than a
network of five rules as in the
VisiRule representation (figure 13).

The reason that the VisiRule
version requires less rules than the
textual representation is that the first
four clauses above are represented as
a single disjunctive rule.

Knowledge Sharing
One great advantage of VisiRule

charts is that they enable knowledge
sharing and collaborative
development of rule-based systems
by non-technical personnel.

People intuitively understand

visual representations more easily
than complex textual representations
as they can 'see at a glance' what is
going on. This is why Powerpoint
presentations are so ubiquitous in the
business world. Tools such as
VisiRule take this one step further in
that they enable the creation of
executable visual representations.

This is different from paradigms
such as Visual Basic which enable the
visual presentation of predominantly
text based dialogues. With VisiRule
the user creates graphical machines,
the appearance of which shows
how they structure and encode
knowledge.

The emphasis on visual
representation as opposed to textual
representation provides three major
advantages since such graphical
constructs are:

* fast to construct
* intuitive
* safe (because the system verifies

them in the background)

Whereas textually based constructs
are:

* slow
* unobvious
* error prone

Much like a PowerPoint slide show
that can be executed, VisiRule's
graphical emphasis makes the
knowledge accessible to both
technical and non-technical
personnel. VisiRule generates Flex
code from the flowcharts and
compiles it, allowing the user to test
the system as it is being constructed.

Language Independence
It doesn't matter whether the

final rule-based system is to be
ultimately implemented in Flex or
Prolog. VisiRule can be used as a
rapid prototyping development
environment in which non-technical
managers can communicate what they
want to their technical staff who can
then implement it in any language.

In fact, LPA intends to equip
future versions of the tool with a
code generation utility which would
enable the user to select Java, Visual
Basic or C++ as the executable code

to be generated.

Charles Langley
can be reached at
chaslangley@
aol.com

Clive Spenser can
be reached at
clive@lpa.co.uk

References
Ross 2003 , Ronald
G Ross, 'Principles
of the Business
Rules Approach',
Addison Wesley,
ISBN 0-201-78893-
4, page 139.

PCAI 36 18.3

Figure 13

