
Flex & Prolog Utility Predicates

VisiRule combines graphical modelling with AI programming.

VisiRule generates flex code which in turn compiles into Prolog.

Each of these sub-systems offer a wide range of routines for manipulating text,
numbers, inputs, outputs etc.

You can think of these as scripting languages – though they are actually
compiled on-the-fly

Theis document seeks to show how to programmatically interact with certain
constructs such as global variables, questions, groups from within VisiRule code
boxes and statements boxes.

Flex

Global Variables
Flex supports global variables which can be accessed from anywhere within a
chart. The routines which are relevant are add-value, isa_value and new_value.

Questions
Flex supports program access to questions thru isa_question and new_question.
The contents of questions are accessible as global variables reflecting the name
of the question.

Groups
Groups are arbitrary collections of items. The routines which are relevant are
isa_group and new_group.

add_value(+Slot,+Term)

add_value/2 can either be used to augment lists or to increment numbers.

The given Term is first dereferenced down to some Value.
The Slot should be the name of a global variable.

If there is an existing slot then it is updated with Value. Otherwise, a new slot is created.

Example
add_value(colors, [red,blue,cyan,white]).

isa_group(?Name,-Elements)
Retrieve the Name and Elements of a group.
Example
?- isa_group(N, E) .

N = colors

E = [black,blue,green,cyan,red,magenta,yellow,white])

isa_question(?Name,-Question,-Answer,-Explanation)

Retrieve a question from the workspace (see the new_question/4 predicate for a description
of the arguments).
Example
?- isa_question(N, Q, A, E).

N = name_of_applicant

Q = ['Please',enter,your,full,name]

A = input(name)

E = text(['No',name,means,no,benefit,!])

N = starter

Q = ['Please',choose,a,starter,for,your,meal]

A = single([pate,soup,melon])

E = none

isa_value(?Slot,-Value)

Retrieve either the current Value, or in its absence the default Value, for the Slot. The Slot
should be the name of a global variable.
Examples
?- isa_value(temperature, X).

X = 100

new_group(+Name,+Elements)

Create (or replace if the Name already exists) a new group containing the given Elements.

A group is used as an ordering relation when comparing the relative values of two elements (see
comparison/4).
Examples
new_group(fuzzy_ordering,

[impossible,improbable,possible,probable,definite])

new_question(+Name,+Question,+Answer,+Explanation)

Add (or replace if the Name already exists) a new question to the workspace.

Question is a list of words to be displayed whenever the question is asked
The Answer indicates how an answer is to be obtained. It is one of the following:

input Set up a dialog with an edit field into which the user can type
words and numbers.
input(T) Set up a dialog with an edit field into which the user can type

information. The expected type of the input is determined by
T, which is one of set, name, number, integer

or (X : conditions)
single(M) Set up a dialog with a menu M from which the user can make

a single selection.
multiple(M) Set up a dialog with a menu M from which the user can
make multiple selections.
Term : Goal Execute the Goal and return the Term as the answer to
the question.
Examples

new_question(name_of_applicant,

['Please',enter,your,full,name],

input(name),

text(['No',name,means,no,benefit,!]))

new_question(starter,

['Please',choose,a,starter,for,your,meal],

single([pate,soup,melon]), none)

new_question(dessert,

['Please',choose,a,dessert,for,your,meal],

multiple(dessert),

file(the_complete_irish_cook))

new_value(+Slot,+Term)

The given Term is first dereferenced down to some Value.

If the Slot is the name of a global variable then the following call is made:
new_slot(Slot, global, Value) .

The frame global is a special frame reserved for the value of global variables.
Example
new_value(temperature, boiling_point) .

prove(+Goal)

Dereference each of the arguments of the Goal and then try to prove it.
If there is a Prolog program for the Goal, then that program is run, otherwise the workspace is
searched for a matching fact.

reconsult_rules(+FileName)

Reconsult (i.e. load) a flex ksl file.

restart

Clear the workspace of all instances, slot values, all facts and all exceptions,
re-enable all rules and finally run all data directives. It is defined by the
program:

restart :-

remove_instances,

remove_slots,

remove_facts,

remove_exceptions,

enable_rules,

run_data.

Example Uses

These are actual extracts from the Console window command line.

Here we use add_value to update a global set

| ?- new_value(colors, [black,white]).

yes

| ?- prove(write(colors)), nl.

[black,white]

yes

| ?- add_value(colors, [red,blue,cyan,white]).
yes

| ?- prove(write(colors)), nl.

[red,blue,cyan,black,white]

yes

Note:

1] When using the Prolog Console Window and command line, we have to explicitly wrap up the call to

write inside a prove/1 to invoke dereferencing.

2] add_value knows not to duplicate entries in lists denoted by [] as they are sets in Flex.

Here we use add_value to update a global counter

| ?- new_value(color_count, 2).

yes

| ?- prove(write(color_count)), nl.

2

yes

| ?- add_value(color_count, 3).

yes

| ?- prove(write(color_count)), nl.

5

Yes

Prolog level predicates

Prolog is a powerful AI programming language with many many predicates (routines).

We introduce some of the ones here which are particularly useful when building VisiRule solutions.

is/2

compute an arithmetic expression

Result is Expression
?Result <number> or <variable>
+Expression <expr>

Comments This evaluates the given arithmetic Expression and unifies the solution with Result.
The Expression may be anything from a simple number to a deeply nested term
containing one or more of the subterms, representing functions and operators. These
can be split into two groups, the first of which can be applied to any numbers (integer
or floating point) and the second of which are limited to use on integers. The following
table shows the general functions and operators:

Term Function

X + Y adds X to Y

X - Y subtracts Y from X

- X returns the negative of X

X * Y multiplies X by Y

X / Y divides X by Y

X // Y performs integer division of X by Y, truncating the result
towards zero

X mod Y computes X modulo Y, where the result has the same sign as
Y

X ^ Y raises X to the power of Y

?(X) computes a linear congruential pseudo random floating point
number between zero and X

@(X) computes a Marsaglia Zaman pseudo random floating point
number between zero and X

abs(X) computes the absolute value of X

acos(X) computes the arccosine of X (degrees)

aln(X) computes the natural antilogarithm of X

alog(X) computes the common antilogarithm of X

asin(X) computes the arcsine of X (degrees)

atan(X) computes the arctangent of X (degrees)

cos(X) computes the cosine of X (degrees)

Examples The following calls show a variety of expressions being evaluated or tested:

?- X is 2 + 2. <enter>
X = 4
?- 5 is 10 / 2. <enter>
yes
?- X is 22 / 7. <enter>
X = 3.142857142857143
?- X is asin(sin(45) * cos(60) / tan(75)). <enter>
X = 5.436029972077099

Notes The is/2 predicate is the primary "maths engine" in Prolog programs, being used for
everything from the simple incrementing of a counter through to complex arithmetical
computations. In addition to the basic set of standard arithmetic operators, WIN-PROLOG
includes a full set of "scientific calculator" functions, covering logarithms, linear trigonometry,
truncation and rounding functions. For simulation work it also includes a carefully-researched
pseudo random number generator (see seed/1 for further information), and finally a set of bit-
oriented integer manipulation operators.

There are various things to note about arithmetic handling in WIN-PROLOG: firstly, there is
automatic conversion between the integer and floating point data types during computations,
and wherever possible, results are converted back to integers upon completion. Consider the
following call:

?- X is 2 * 4.5. <enter>
X = 9

The is/2 predicate needs to multiply the integer "2" with the floating point number "4.5", and so
it converts the former into the floating point value "2.0" prior to the multiplication. Before

returning the result "9.0", a check is made to see whether this value can be represented precisely
by an integer; in this case it can, so the computed result is converted back into the integer "9",
and it is this that is returned.

This new package is faster and more accurate than its predecessor, allowing an extra digit or so
of usable precision, which is reflected in output, which now defaults to 16 significant digits,
rather than the 15 of earlier versions of

From WIN-PROLOG.WIN-PROLOG 6.0 - Technical Reference 379

length/2

test or get the length of a list or generate a list

length(List, Length)
?List <list> or <variable>
?Length <integer> or <variable>

Comments This can be used to get ot check the length of a list, or to generate lists of a given
length. When Length is an integer, a list of distinct variables is generated and unified
with List. When Length is an unbound variable, the length of List is computed and
unified with Length. This predicate is non-deterministic, and can generate successive
lengths and lists on backtracking.

Examples When called with two variables, a succession of lists and lengths is generated:

?- length(L, N). <enter>
L = [] ,
N = 0 ; <space>
L = [_1] ,
N = 1 ; <space>
L = [_1,_2] ,
N = 2 <enter>

Notes The length/2 predicate can be used to test and generate lists, and because it is written in Prolog,

it can also handle non-deterministic cases as shown above.

member/3

get or check a member of a list and its position

member(Term, List, Position)
?Term <term>
?List <list> or <variable>

?Position <integer> or <variable>

Comments This predicate succeeds when its first argument is bound to a Term which is a member
of the List bound to the second argument, and its third argument is bound to this
element's Position. The second argument may be a fully or partially instantiated list,
or simply a variable; member/3 can backtrack to generate alternative solutions where
appropriate.

Examples The following command extracts each of the elements of a given list in turn:

?- member(T, [black,and,white], P). <enter>
T = black ,
P = 1 ; <space>
T = and ,
P = 2 ; <space>
T = white ,
P = 3 ; <space>
no

Notes The member/3 predicate is a special variant of the classic Prolog program, member/2:
when it is called with Position as an unbound variable, the present predicate is exactly
like its arity-two sibling, supporting all the latter's backtracking and list-generating
features. When, however, Position is given as an integer, member/3 becomes
deterministic, returning just the given solution and leaving no choicepoints.

sort/2

sort a list into ascending order, removing duplicate terms

sort(List1, List2)
+List1 <list>
?List2 <variable> or <list>

Comments This sorts the list of terms in List1 into ascending order according to the standard
ordering of terms, removes all duplicates, and unifies the result with List2.

Examples The following command sorts the given list of terms into ascending order, removing
any duplicates:

?- sort([the,cat,and,the,dog], S). <enter>
S = [and,cat,dog,the]

sort/3

sort a list into ascending order using given key path

sort(List1, List2, Path)
+List1 <list>
-List2 <variable>
+Path <list>

Comments This sorts the list of terms in List1 into ascending order according to the "standard
ordering" of terms, using the given Path to identify the sort key, and unifies the result
with List2.

Examples The following command sorts the given list of terms into ascending order, using an
empty path ("[]"), and without removing any duplicates:

?- sort([the,cat,and,the,dog], S, []). <enter>
S = [and,cat,dog,the,the]

Notes Unlike sort/2, the sort/3 predicate does not remove duplicate entries from the sorted
list, and unlike keysort/2, it does not restrict the input list to containing only terms of
the form "key-value". Of the three sorting predicates, sort/3 is the most general: in
fact, the other two are simply implemented in terms of the present predicate.

The Path feature of sort/3 is extremely powerful, allowing any arbitrary sub-term to
be used as the sort key on any particular occasion (see mem/3 for more information
about paths):

?- sort([3-the,1-quick,4-brown,2-fox], S, [2]). <enter>
S = [1 - quick,2 - fox,3 - the,4 - brown]
?- sort([3-the,1-quick,4-brown,2-fox], S, [3]). <enter>
S = [4 - brown,2 - fox,1 - quick,3 - the]

remove/3

remove an element from a list

remove(Term, List, Rest)
?Term <term>
?List <list> or <variable>
?Rest <list> or <variable>

Comments This predicate succeeds when its first argument is bound to a Term that is an element
in a particular List, and Rest is bound to another list that contains all the elements of
List except for Term. Either of the last two arguments may be fully or partially

instantiated lists, or simply variables; remove/3 can backtrack to generate alternative
solutions where appropriate.

Examples The following command simply removes the element, "2", from a list, "[1,2,3]", to give
the remainder:

?- remove(2, [1,2,3], R). <enter>
R = [1,3] ; <space>
no

The next example runs this predicate in reverse, inserting the given element into a
list; on backtracking, each possible solution is offered in turn:

?- remove(a, L, [1,2]). <enter>
L = [a,1,2] ; <space>
L = [1,a,2] ; <space>
L = [1,2,a] ; <space>
no

Notes The remove/3 predicate is a classic Prolog program, and is widely used for removing items from
or inserting them into lists: however, in some Prolog implementations it is not a built-in predicate, and
"foreign" source files might contain a definition of remove/3. In order to avoid errors, such references
must be renamed or removed before loading files into WIN-PROLOG.

reverse/2

reverse the order of elements in a list

reverse(List, Reverse)
?List <list> or <variable>
?Reverse <list> or <variable>

Comments This predicate succeeds when both its first argument is bound to a List, and its second
argument contains a list comprised of the same set of elements, but in Reverse order.
Either of the two arguments may be fully or partially instantiated lists, or simply
variables; reverse/2 can backtrack to generate alternative solutions where
appropriate.

Examples The following command simply reverses the list, "[1,2,3]", to give a second list:

?- reverse([1,2,3], R). <enter>
R = [3,2,1]

Notes The reverse/2 predicate is a classic Prolog program, and is widely used for reversing
the order of elements in lists: however, in some Prolog implementations it is not a
built-in predicate, and "foreign" source files might contain a definition of reverse/2.
In order to avoid errors, such references must be renamed or removed before loading
files into WIN-PROLOG.

When its first argument is given as a list, reverse/2 is very efficient (its behaviour is linear with respect
to list length), because it uses a "difference list" algorithm; however, where the first argument is a
variable, the algorithm reverts to "generate and test", which explains the eventual "heap full" error on
backtracking. For this reason, it is always best to specify the first argument in calls to reverse/2.

append/3

join or split arbitrary lists

append(First, Second, Whole)
?First <list> or <variable>
?Second <list> or <variable>
?Whole <list> or <variable>

Comments This predicates succeeds when Whole is bound to a list consisting of the Second list
appended to the First list. Any of the arguments may be fully or partially instantiated
lists, or simply variables; append/3 can backtrack to generate alternative solutions
where appropriate.

Examples The following command simply joins two list, "[1,2,3]" and "[a,b,c]", to give a new
whole one:

?- append([1,2,3], [a,b,c], W). <enter>
W = [1,2,3,a,b,c]

Notes The append/3 predicate is a classic Prolog program, and is widely used for joining and splitting
lists: however, in some Prolog implementations it is not a built-in predicate, and "foreign" source files
might contain a definition of append/3. In order to avoid errors, such references must be renamed or
removed before loading files into WIN-PROLOG.

cat/3

join or split atoms or strings

cat(Parts, Whole, Joins)
?Parts <list> or <variable>
?Whole <string> or <atom> or <variable>

?Joins <list> or <variable>

Comments This predicate can be used to join an arbitrary number of strings or atoms together,
or to split an atom or string into an arbitrary number of parts.

When joining (concatenating) text items, Parts must be bound to a list containing
atoms or strings (but not both), and Whole and Joins must be unbound variables. The
predicate succeeds by returning a single atom or string in Whole, together with a list
of integers in Joins, which describes where to split the resulting atom or string in order
to restore the original list.

When splitting (separating) an atom or a string into a list of components, Parts must
be an unbound variable, and Whole and Joins must be bound to an atom or string and
a list of integers respectively. The predicate succeeds by returning the list of atoms or
strings that is obtained by splitting the given atom or string at the specified split
points.

Examples The following call concatenates a series of atoms, returning a single atom and list of
split points:

?- cat([the,quick,brown,fox], A, J). <enter>
A = thequickbrownfox ,
J = [3,5,5]

The following call splits a string at the specified offsets:

?- cat(L, `jumpsoveralazydog`, [5,4,1,4]). <enter>
L = [`jumps`,`over`,`a`,`lazy`,`dog`]

Notes The output text type generated by cat/3 (ie, atom or string) is determined by the text type that

was input.

forall/2

test that a given goal is true for all cases of another goal

forall(Goal1, Goal2)
+Goal1 <goal>
+Goal2 <goal>

Comments This succeeds if for all solutions of Goal1, Goal2 is also true.

Examples The following call uses member/2 and atom/2 to check that all members of the given
list are atoms:

?- forall(member(X,[a,b,c]), atom(X)). <enter>
X = _

Conversely, the following call fails because one of the list elements is an integer,
rather than an atom:

?- forall(member(X,[a,b,3]), atom(X)). <enter>
No

Notation Conventions

Predicate Definitions
When predicate definitions are given, the functor, arguments and positions of the arguments of
the predicate are shown as a template such as:
foo(+Arg1, ?Arg2, -Arg3)

This defines a predicate called .foo. that can take three arguments. The character that precedes
each argument name is a mode declaration.

Mode Declarations
The possible "mode declarations" characters, and their meanings, are given in Table 1 -
mode declaration symbols:

+ Denotes an input argument. It must be instantiated by the timethe predicate is

called.

- Denotes an output argument. The argument must be an uninstantiated variable
when the predicate is called. If the predicate succeeds, the argument will be
bound to the return value.

? Denotes an input or output argument. The argument may be instantiated or
uninstantiated

Table 1 - mode declaration symbols

Prolog Listings
Listings of Prolog programs and examples of Prolog queries are shown in ’Courier New’ font.

The text that you actually type in is often shown in bold. Text that is output by WIN-PROLOG and
supplementary comments are shown in plain text.

?- X = [this,is,a,'PROLOG',list].

Horizontal ellipses (.) are used as a shorthand in examples to indicate that any number of items
may be entered.
foo(arg1, arg2, …, argn) (n < 1)

denotes a compound term with at least one argument.

Argument References
When the arguments that appear in the predicate templates are referred to in the body text, they
appear capitalized and italicised.

Prolog (Logical) Variable Names

A logical variable in Prolog is an alphanumeric sequence of characters beginning with an upper
case letter (A-Z) or an underscore (’_’). The alphanumeric sequence can include ’_’ and characters
with character codes above 127. For example, the following are variable names:

Anything _var _1 X Var1

Quoting with single quotes overrides the variable name convention. For example the following are
both quoted atoms:

'Anything' '_var'

Quoted atoms and atoms can be the names of global variables in VisiRule, or data items.

An underscore on its own is an anonymous variable.

Integers
An integer is a number with no fractional part. It is written as a sequence of digits, optionally
preceded by a minus sign (-). Note that in WIN-PROLOG an integer is in the range -2147483648 to
2147483647 (7FFFFFFFh).

The plus sign (+) must not be used to denote a positive integer. All positive integers are written
without a leading sign character. For example:

0 1 9821 -10 -64000

Floating Point Numbers
A floating point number is written as an optional minus sign (-) followed by a sequence of one or
more digits followed by a decimal point (.) followed by one or more digits, optionally followed by
an exponent. An exponent is written as e (or E) followed by an optional minus sign followed by
one to three digits.

As with integers, the plus sign (+) must not be used to denote a positive floating point number. For
example:

1.0 246.8091 -12.3 20.003e-10 -1.3E102

The following are not floating point numbers:

.9 % does not start with a digit

3e-22 % no decimal point

34.1 e3 % contains a space before the 'e'

-.7 % no digit after the minus sign

56.1e4.8 % exponent is not an integer

23. % no digit after the decimal point

Atoms
Atoms are text names that are used to identify data, programs, modules, files, windows, and so
on.

The maximum length of an atom is 1024 bytes (this does not necessarily mean 1024 characters as
WIN-PROLOG supports Unicode). There main two types of atoms are alphanumeric, and quoted
atoms.

Alphanumeric Atoms

An alphanumeric atom is written as a lower case letter (a-z) followed by a sequence of zero or
more alphabetic characters (A-Z,a-z), digits (0-9) or underscores (_).

Note that characters with character codes above 127 are treated as lower case letters in
alphanumeric atoms. For example:

apple a1 apple_cart test_1_case

foo123 f_T1 fred longTable

Quoted Atoms
A quoted atom is any sequence of characters surrounded by single quotes. To insert a single quote
character in a quoted atom use two adjacent single quote characters: ''

The tilde character (~) is used within quoted atoms as an escape character. Tilde followed by a
printable character in the range ’@’ to ’_’ is used to represent a control character. For example:
'~I'
represents ctrl-I.

The tilde character can also be followed by a hexadecimal integer within brackets representing the
character code of a character. This can be useful for inserting characters with a character code
greater than 7Fh (127).

To insert a tilde in a quoted atom use ~~.
Examples
'Apple' '123' '~(0)' 'hello world'

'~Ibold~M~J' '~(41)' '~(FFFFffff)' 'don''t care'

Lists

A list (which is a powerful recursive data structure) is a sequence of terms of the form:

[t 1,t 2 ,…,tn] n  0

The term ti is the i’th element of the list. It can be any type of Prolog term. The simplest form of
list is the empty list (n = 0):

[]

The following example is a four element list – the first element of which itself is a list:

[[a,list,of,lists],and,numbers,[1,2,3]]

Unknown elements of a list can be represented by variables. For example:

[X,Y,Z]

We also represent a list using the notation:

[t1, t2, …, ti | Variable] i ≥ 1

This list pattern represents a list that begins with the terms t1,t2,.,ti with the remainder of the list
(the tail) denoted by Variable.

For example the list pattern:

[Head|Tail]

could be unified using Prolog’s pattern matching algorithm with the list:

[1,2,3,4]

to give the variable bindings:

Head = 1

Tail = [2,3,4]

Arithmetic

WIN-PROLOG supports mixed integer and double precision floating point arithmetic.

The LPA philosophy is that since integers and floating point numbers with no significant decimal
places are logically the same, there should be no distinction between these in a high-level
language like Prolog: effectively there should only be one numerical data type. The only reason
integers are supported by WIN-PROLOG is for efficiency.

In WIN-PROLOG the conversion between integers and floating point numbers is transparent to
user programs and occurs inside the arithmetic handler used by is/2 and other predicates. Prior to
a calculation, any integers are converted into floating point numbers, and afterwards the result is
converted to an integer if possible. One exception is the addition (or subtraction) of two integers.
Wherever possible this is done using integer arithmetic for speed.

Integers in WIN-PROLOG are represented in 32-bit two’s complement format with a range of -
2147483648 to 2147483647 (7FFFFFFFh). Floating point numbers are represented using the IEEE
double precision format. This gives a precision of about 15 significant digits, and a range of 2.2e-
308 to 1.7e308.

Rounding errors will invariably occur during certain operations because many decimal fractions
have no direct binary representation. These errors are normally confined to the 14th or 15th digit.
No attempt is made to round results to fewer decimal places.

For example, if the result of a calculation is the value 1.9999999999997 this value would not be
converted to the integer 2; however there are functions to perform such rounding explicitly.

Predicates Related to Arithmetic

</2 expression less than

=:=/2 expression equality

=</2 expression less than or equal

=\=/2 expression inequality

>/2 expression greater than

>=/2 expression greater than or equal

is/2 expression evaluator

seed/1 seed the random number generator

Arithmetic Expressions
Arithmetic is performed by a number of built-in predicates that take arithmetic expressions as
arguments. The most common way to perform arithmetic is using the is/2 predicate.

An arithmetic expression can be one of the following:

• A number (integer or floating point).

• A list of the form [X] where X is a number. This allows single character strings to appear in
expressions (e.g. "a").

• A function. A function is represented by a compound term whose functor denotes the type
of function, and whose argument(s) is itself an expression. Only certain pre-defined
functions are allowed in an expression these are described in Tables 2 - 7 below.

• A bracketed expression of the form (Expr), where Expr is itself an expression.

• A variable that must have been bound to one of the above by the time the expression is
evaluated. (If by the time the expression is evaluated it contains an unbound variable, a
"Control Error" will be generated.)

Examples
The following are all legal arithmetic expressions.

23

45 * 97 / 2

sin(45)

tan((3 + 4) * 5)

[90] + 3

"A"

Table 5 to Table 8 outline the arithmetic functions that can be used with the is/2 predicate.

Function Description

X + Y the sum of X and Y.

X - Y the difference of X and Y.

-X the negative of X.

X * Y the product of X and Y.

X / Y the quotient of X and Y.

X // Y the integer quotient of X and Y. The result is truncated to the nearest
integer between it and 0.

X mod Y the remainder after integer division of X by Y. The result is the same sign
as X

X ^ Y X to the power of Y.

rand(X) computes a pseudo-random floating point number between 0 and X

sqrt(X) the square root of X.
Table 5 - basic arithmetic functions

The trigonometric functions (see Table 6) work in degrees. They take a single argument X that can
itself be an expression.

Function Description

sin(X) the sine of X degrees

cos(X) the cosine of X degrees.

tan(X) the tangent of X degrees.

asin(X) the arcsine of X in degrees.

acos(X) the arccosine of X in degrees.

atan(X) the arctangent of X in degrees.
Table 6 - trigonometric functions

The following functions provide WIN-PROLOG’s support for logarithms.

Function Description

aln(X) e to the power of X.

alog(X) 10 to the power of X.

ln(X) the natural logarithm of X.

log(X) the base 10 logarithm of X.
Table 7- logarithmic functions
The truncation functions (see Table 8) can be used for such things as rounding, returning signs and
determining minimum and maximum values.

Function Description

abs(X) the absolute value of X. e.g. abs(-3.5) returns 3.5.

fp(X) the fractional part of X. e.g. fp(-3.5) returns -0.5.

int(X) the first integer equal to or less than X. e.g. int(-3.5) returns -4.

ip(X) the integer equal part of X. e.g. ip(-3.5) returns -3.

max(X,Y) the maximum value of X and Y. e.g. max(-3.5,4). returns 4.

min(X,Y) the minimum value of X and Y. e.g. min(-3.5,4). returns -3.5.

sign(X) -1 if X is negative, 0 if X is 0, or 1 if X is positive. e.g. sign(-3.5) returns -1
Table 8- truncation functions

